Negle Valves

High Pressure

30SC, 43SC, 30VM, 40VM, 60VM, 100VM & 150V Series

Pressures to 150,000 psi (10342 bar)

Since 1945, Autoclave Engineers has designed and built premium quality valves, fittings and tubing. This commitment to engineering and manufacturing excellence has earned Autoclave a reputation for reliable and efficient product performance. Autoclave Engineers has long been established as the worldwide leader in high pressure fluid handling components for the chemical/petrochemical, research, oil and gas, waterjet, and waterblast industries.

16 FOLL 6 VEN VESS - **High Pressure** 30sc, 43sc, 30vm, 40vm, 60vm, 100vm & 150v Series

Needle Valves - High Pressure

High Pressure Valve Features

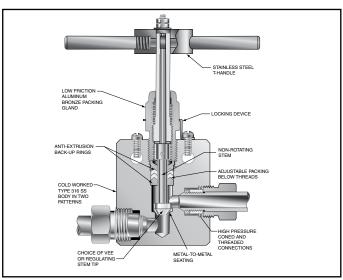
- Tubing sizes from 1/4" to 1".
- Non-rotating stem prevents stem/seat galling.
- Rising stem/barstock body design.
- Metal-to-metal seating achieves bubble-tight shut-off, longer stem/seat life in abrasive flow, greater durability for repeated on/off cycles and excellent corrosion resistance.
- For dependable stem and body sealing 30SC, 43SC and 30VM valves are furnished with PTFE (Teflon) encapsulated packing; the 40VM and 60VM valves feature nylon/leather packing below threads.
- Stem sleeve and packing gland materials have been selected to achieve extended thread cycle life and reduced handle torque.
- Choice of Vee or Regulating stem tips.

Series 100VM: Pressures to 100,000 psi (6895 bar) features:

- Cold-worked type 316 stainless steel body with aluminum bronze packing gland and non-rotating stem.
- Nylon and leather packing below stem threads.

Series 150V: Pressures to 150,000 psi (10342 bar) features:

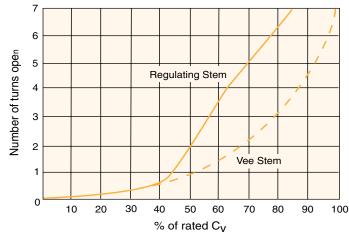
- Cylindrical body of high strength alloy steel with stainless steel packing gland. Tool steel non-rotating stem with replaceable seat of nickel maraging steel. Stem must be actuated with torque wrench (refer to Tools, Installation, Operation and Maintenance section).
- Wedge-type Teflon and leather packing below stem threads with beryllium-copper Autoclave Anti-Extrusion Back up Rings.
- Vee stem tip only


Autoclave valves are complemented by a complete line of high pressure fittings and tubing. The high pressure series uses Autoclave's coned-and-threaded connections for dependable performance in gas or liquid service.

Pressures to 43,000 psi (2965 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
Series 30SC 1 Series 43SC	F1000C43	.438 (11.12)	2.6	30,000 (2068)
1	F1000C43	.438 (11.12)	2.6	43,000 (2965)

Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 30SC Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 30SC16071 30SC 16 XX 07 **Outside Diameter** Stem/Seat Valve **Body** Options Series **Tube Size** Type Pattern For extreme 1 - two-way straight 30SC 16-1" 07 - non-rotating temperature and Vee stem (on-off service) 43SC 2 - two-way angle other options. 08 - non-rotating see Valve Options. regulating stem (tapered tip for regulating and shutoff) 87 - Vee stem with replaceable 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Autoclave valves with Teflon packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

- **TG** standard valve with Teflon glass packing to 600°F (316°C).
- **GY** standard valve with graphite braided yarn packing to 800°F (427°C). 8,000 psi (569 bar) max.
- **HT** extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).
- **B** standard valve with cryogenic trim material and Teflon packing to -100°F (-73°C).
- LT extended stuffing box valve with Teflon packing & Cryogenic trim materials to -423°F (-252°C).
- **K** anti-vibration collet and gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R30SC16071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found in the valve drawing or contact your Sales Representative for information.

Consult your Autoclave representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

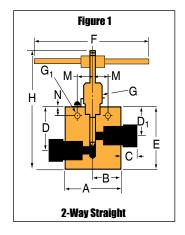
Catalog	Stem	Outside	Orifice					Dime	nsions -	inches ((mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

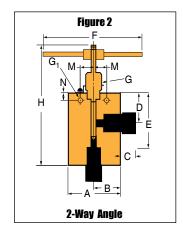
2-Way Straight

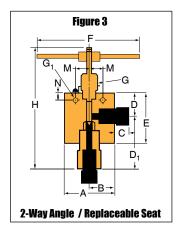
		,															
30SC16071	VEE	1"	0.438	4.13	2.06	0.72	3.50	2.75	4.44	10.25	1.62	0.56	8.42	1.25	1.12	1.75	
30SC16081	REG	(25.40)	(11.12)	(104.90)	(52.32)	(18.28)	(88.90)	(69.85)	(112.77)	(260.35)	(41.14)	(14.22)	(213.86)	(31.75)	(28.44)	(44.45)	See
43SC16071	VEE	1"	0.438	4.88	2.44	0.72	3.50	2.75	4.44	10.25	1.62	0.56	8.42	1.25	1.12	2.25	Figure 1
43SC16081	REG	(25.40)	(11.12)	(123.96)	(61.96)	(18.28)	(88.90)	(69.85)	(112.77)	(260.35)	(41.14)	(14.22)	(213.86)	(31.75)	(28.44)	(57.15)	1

2-Way Angle

30SC16072	VEE	1"	0.438	4.13	2.06	0.72	2.75	5.12	10.25	1.62	0.56	9.35	1.25	1.12	1.75	
30SC16082	REG	(25.40)	(11.12)	(104.90)	(52.32)	(18.28)	(69.85)	(130.04)	(260.35)	(41.14)	(14.22)	(237.49)	(31.75)	(28.44)	(44.45)	See
43SC16072	VEE	1"	0.438	4.88	2.44	0.72	3.50	4.44	10.25	1.62	0.56	8.42	1.25	1.12	2.25	Figure 2
43SC16082	REG	(25.40)	(11.12)	(123.96)	(61.96)	(18.28)	(88.90)	(112.77)	(260.35)	(41.14)	(14.22)	(213.86)	(31.75)	(28.44)	(57.15)	


2-Way Angle/Replaceable Seat


30SC16872	VEE	1"	0.438	4.13	2.06	0.72	2.75	4.31	5.24	10.25	1.62	0.56	10.56	1.25	1.12	1.75	
30SC16882	REG	(25.40)	(11.12)	(104.90)	(52.32)	(18.28)	(71.37)	(109.47)	(133.35)	(260.35)	(41.14)	(14.22)	(268.22)	(31.75)	(28.44)	(44.45)	See
43SC16872	VEE	1"	0.438	4.88	2.44	0.72	2.75	4.31	5.24	10.25	1.62	0.56	8.42	1.25	1.12	2.25	Figure 3
43SC16882	REG	(25.40)	(11.12)	(123.96)	(61.96)	(18.28)	(71.37)	(109.47)	(133.35)	(260.35)	(41.14)	(14.22)	(213.86)	(31.75)	(28.44)	(57.15)	


G - Packing gland mounting hole drill size

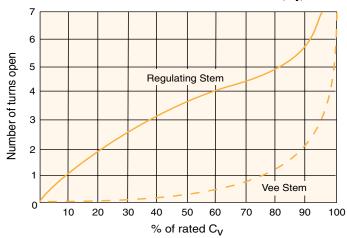
G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. All dimensions for reference only and subject to change.

*H Dimesion is with stem in closed position

Pressures to 30,000 psi (2068 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/4	F250C	0.094 (2.39)	0.12	30,000 (2068)
3/8	F375C	0.125 (3.18)	0.23	30,000 (2068)
9/16	F562C	0.125 (3.18)	0.33	30,000 (2068)

Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating quide in Technical Information section.

AUTOCLAVE 30VM4071 ENGINEERS 316SS PSI @ RT PSI @ RT V.C.1-2

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 30VM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 30VM4071 **30VM** XX 4 07 **Outside Diameter** Body Stem/Seat Valve **Options Tube Size** Type Pattern Series For extreme 4-1/4" 1 - two-way straight 07 - non-rotating temperature and other 6-3/8" Vee stem (on-off service) 2 - two-way angle options, see Valve 9-9/16" 08 - non-rotating 3 - three-way, two on pressure Options. regulating stem (tapered tip 4 - three-way, one on pressure for regulating and shutoff) 5 - three-way, two-stem 87 - Vee stem with replaceable manifold valve 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Autoclave valves with Teflon packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (644°C) by adding the following suffixes to catalog order number.

- TG standard valve with Teflon glass packing to 600°F (316°C).
- **GY** standard valve with graphite braided yarn packing to 800°F (427°C).
- HT extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).
- **B** standard valve with cryogenic trim material and Teflon packing to -100°F (-73°C).
- LT extended stuffing box valve with Teflon packing & Cryogenic trim materials to -423°F (-252°C).
- K anti-vibration collet and gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R30VM4071**)

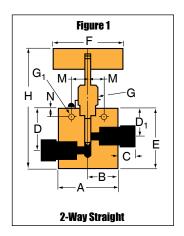
Valve Bodies: Valve bodies are available. Order using the eight (8)

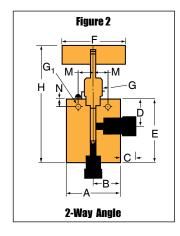
digit part number found in the valve drawing or contact your Sales Representative for information.

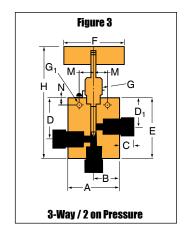
Consult your Autoclave representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

lubc	Orifice Diameter	A	В	С	_									Thick-	Valve
					D	D ₁	E	F	G	G ₁	Н*	М	N	ness	Pattern
t						•									
1/4	0.094	2.00	1.00	0.50	1.50	1.12	2.00	3.00	1.00	0.22	4.62	0.69	0.38	1.00	
6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(38.10)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(117.35)	(17.53)	(9.65)	(25.40)	
3/8	0.125	2.00	1.00	0.53	1.50	1.12	2.00	3.00	1.00	0.22	4.68	0.69	0.38	1.00	See
9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(38.10)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(118.87)	(17.53)	(9.65)	(25.40)	Figure 1
9/16	0.125	2.62	1.31	0.81	1.56	1.12	2.44	3.00	1.00	0.28	5.06	0.69	0.38	1.50	
14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(39.62)	(28.45)	(61.98)	(76.20)	(25.40)	(7.11)	(128.52)	(17.53)	(9.65)	(38.10)	
9	1/4 (.35) (.35) (.53) (/16)	1/4 0.094 0.35) (2.39) 3/8 0.125 0.53) (3.18) 1/16 0.125	1/4 0.094 2.00 .35) (2.39) (50.80) 3/8 0.125 2.00 .53) (3.18) (50.80) /16 0.125 2.62	1/4 0.094 2.00 1.00 .35) (2.39) (50.80) (25.40) 3/8 0.125 2.00 1.00 .53) (3.18) (50.80) (25.40) /16 0.125 2.62 1.31	1/4 0.094 2.00 1.00 0.50 .35) (2.39) (50.80) (25.40) (12.70) 3/8 0.125 2.00 1.00 0.53 .53) (3.18) (50.80) (25.40) (13.46) /16 0.125 2.62 1.31 0.81	1/4 0.094 2.00 1.00 0.50 1.50 .35) (2.39) (50.80) (25.40) (12.70) (38.10) 3/8 0.125 2.00 1.00 0.53 1.50 .53) (3.18) (50.80) (25.40) (13.46) (38.10) /16 0.125 2.62 1.31 0.81 1.56	1/4 0.094 2.00 1.00 0.50 1.50 1.12 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) /16 0.125 2.62 1.31 0.81 1.56 1.12	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) (76.20) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 1.00 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) (25.40) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 1.00 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) (76.20) (25.40) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00 1.00	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 1.00 0.22 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 1.00 0.22 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00 1.00 0.28	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 1.00 0.22 4.62 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (117.35) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 1.00 0.22 4.68 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (118.87) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00 1.00 0.28 5.06	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 1.00 0.22 4.62 0.69 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (117.35) (17.53) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 1.00 0.22 4.68 0.69 .53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (118.87) (17.53) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00 1.00 0.28 5.06 0.69	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 1.00 0.22 4.62 0.69 0.38 3.35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (117.35) (17.53) (9.65) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 1.00 0.22 4.68 0.69 0.38 1.53) (3.18) (50.80) (25.40) (13.46) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (118.87) (17.53) (9.65) 1/16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00 1.00 0.28 5.06 0.69 0.38	1/4 0.094 2.00 1.00 0.50 1.50 1.12 2.00 3.00 1.00 0.22 4.62 0.69 0.38 1.00 .35) (2.39) (50.80) (25.40) (12.70) (38.10) (28.45) (50.80) (76.20) (25.40) (5.59) (117.35) (17.53) (9.65) (25.40) 3/8 0.125 2.00 1.00 0.53 1.50 1.12 2.00 3.00 1.00 0.22 4.68 0.69 0.38 1.00 .53) (3.18) (50.80) (25.40) (76.20) (25.40) (5.59) (118.87) (17.53) (9.65) (25.40) /16 0.125 2.62 1.31 0.81 1.56 1.12 2.44 3.00 1.00 0.28 5.06 0.69 0.38 1.50

2-Way Angle


30VM4072	VEE	1/4	0.094	2.00	1.00	0.50	1.12	2.00	3.00	1.00	0.22	4.62	0.69	0.38	1.00	
30VM4082	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(117.35)	(17.53)	(9.65)	(25.40)	
30VM6072	VEE	3/8	0.125	2.00	1.00	0.53	1.12	2.12	3.00	1.00	0.22	4.74	0.69	0.38	1.00	See
30VM6082	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(28.45)	(53.85)	(76.20)	(25.40)	(5.59)	(120.40)	(17.53)	(9.65)	(25.40)	Figure 2
30VM9072	VEE	9/16	0.125	2.62	1.31	0.81	1.12	2.44	3.00	1.00	0.28	5.06	0.69	0.38	1.50	
30VM9082	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(28.45)	(61.98)	(76.20)	(25.40)	(7.11)	(128.52)	(17.53)	(9.65)	(38.10)	


3-Way / 2 on Pressure


30VM4073	VEE	1/4	0.094	2.00	1.00	0.50	1.50	1.12	2.12	3.00	1.00	0.22	4.74	0.69	0.38	1.00	
30VM4083	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(38.10)	(28.45)	(53.85)	(76.20)	(25.40)	(5.59)	(120.40)	(17.53)	(9.65)	(25.40)	
30VM6073	VEE	3/8	0.125	2.00	1.00	0.53	1.50	1.12	2.50	3.00	1.00	0.22	5.12	0.69	0.38	1.00	See
30VM6083	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(38.10)	(28.45)	(63.50)	(76.20)	(25.40)	(5.59)	(130.05)	(17.53)	(9.65)	(25.40)	Figure 3
30VM9073		9/16	0.125	2.62	1.31	0.81	1.56	1.12	2.88	3.00	1.00	0.28	5.49	0.69	0.38	1.50	
30VM9083	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(39.62)	(28.45)	(73.15)	(76.20)	(25.40)	(7.11)	(139.45)	(17.53)	(9.65)	(38.10)	

G - Packing gland mounting hole drill size

G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. All dimensions for reference only and subject to change.

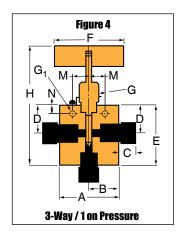
^{*} H Dimension is with stem in the closed position.

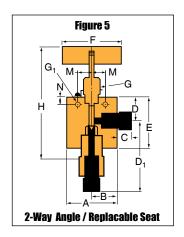
Catalog	Stem	Outside	Orifice					Dime	nsions -	inches ((mm)					Block Thick-	Valve
Number	Туре	Diameter	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

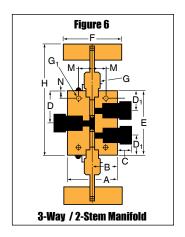
3-Way / 1 on Pressure

· /																
30VM4074	VEE	1/4	0.094	2.00	1.00	0.50	1.12	2.00	3.00	1.00	0.22	4.62	0.69	0.38	1.00	
30VM4084	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(28.45)	(50.80)	(76.20)	(25.40)	(5.59)	(117.35)	(17.53)	(9.65)	(25.40)	
30VM6074	VEE	3/8	0.125	2.00	1.00	0.53	1.12	2.12	3.00	1.00	0.22	4.74	0.69	0.38	1.00	See
30VM6084	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(28.45)	(53.85)	(76.20)	(25.40)	(5.59)	(120.40)	(17.53)	(9.65)	(25.40)	Figure 4
30VM9074	VEE	9/16	0.125	2.62	1.31	0.81	1.12	2.44	3.00	1.00	0.28	5.12	0.69	0.38	1.50	
30VM9084	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(28.45)	(61.98)	(76.20)	(25.40)	(7.11)	(130.05)	(17.53)	(9.65)	(38.10)	

2-Way Angle / Replaceable Seat


30VM4872	VEE	1/4	0.094	2.00	1.00	0.50	1.12	2.06	2.38	3.00	1.00	0.22	5.80	0.69	0.38	1.00	
30VM4882	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(28.45)	(52.32)	(60.45)	(76.20)	(25.40)	(5.59)	(147.32)	(17.53)	(9.65)	(25.40)	
30VM6872	VEE	3/8	0.125	2.00	1.00	0.53	1.12	2.31	2.38	3.00	1.00	0.22	6.05	0.69	0.38	1.00	See
30VM6882	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(28.45)	(58.67)	(60.45)	(76.20)	(25.40)	(5.59)	(153.67)	(17.53)	(9.65)	(25.40)	Figure 5
30VM9872	VEE	9/16	0.125	2.62	1.31	0.81	1.19	2.62	2.44	3.00	1.00	0.28	6.45	0.69	0.38	1.50	
30VM9882	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(30.23)	(66.55)	(61.98)	(76.20)	(25.40)	(7.11)	(163.83)	(17.53)	(9.65)	(38.10)	


3-Way / 2-Stem Manifold

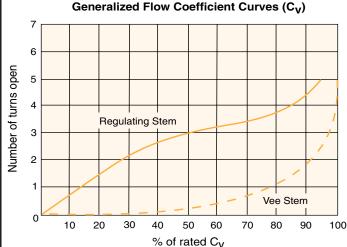

·, .																	
30VM4075	VEE	1/4	0.094	2.00	1.00	0.50	1.53	1.12	3.06	3.00	1.00	0.22	5.68	0.69	0.38	1.00	
30VM4085	REG	(6.35)	(2.39)	(50.80)	(25.40)	(12.70)	(38.86)	(28.45)	(77.72)	(76.20)	(25.40)	(5.59)	(144.27)	(17.53)	(9.65)	(25.40)	
30VM6075	VEE	3/8	0.125	2.00	1.00	0.53	1.62	1.12	3.25	3.00	1.00	0.22	5.87	0.69	0.38	1.00	See
30VM6085	REG	(9.53)	(3.18)	(50.80)	(25.40)	(13.46)	(41.15)	(28.45)	(82.55)	(76.20)	(25.40)	(5.59)	(149.10)	(17.53)	(9.65)	(25.40)	Figure 6
30VM9075	VEE	9/16	0.125	2.62	1.31	0.81	1.88	1.12	3.75	3.00	1.00	0.28	6.37	0.69	0.38	1.50	
30VM9085	REG	(14.29)	(3.18)	(66.55)	(33.27)	(20.57)	(47.75)	(28.45)	(95.25)	(76.20)	(25.40)	(7.11)	(161.80)	(17.53)	(9.65)	(38.10)	

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. All dimensions for reference only and subject to change.

For prompt service, * H Dimension is with stem in the closed position. Autoclave stocks select products. Consult factory.

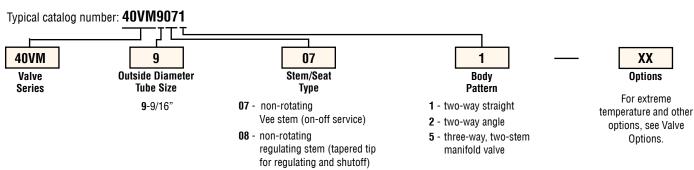
Needle Valves - 40VM Series

Pressures to 40.000 psi (2760 bar)


Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
9/16	F562C40	0.109 (2.77)	0.28	40,000 (2760)

Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.


ALUMNIUM BRONZE PACKING GLAND COLD WORKED TYPE 316 SS BODY IN TWO PATTERNS NON-ROTATING STEM ANTI-EXTRUSION BACK-UP RINGS CHOICE OF VEE OR REGULATING STEM TIP METAL-TO-METAL SEATING

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options Section or contact your Sales Representative. The 40VM Series valves are furnished complete with connection components, unless otherwise specified.

Extreme Temperatures

Standard Autoclave valves with Teflon packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

TG - standard valve with Teflon glass packing to 600°F (316°C).

GY - standard valve with graphite braided yarn packing to 800°F (427°C).

HT - extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

B - standard valve with cryogenic trim material and Teflon packing to -100°F (-73°C).

LT - extended stuffing box valve with Teflon packing & Cryogenic trim materials to -423°F (-252°C).

K - anti-vibration collet and gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

> number for proper repair kit. (Example: R40VM9071)

Valve bodies are available. Order using the eight (8) Valve Bodies:

> digit part number found in the valve drawing or contact your Sales Representative for information.

Consult your Autoclave representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

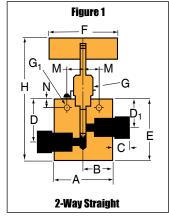
Catalog	Stem	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valvo
Number	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Valve Pattern

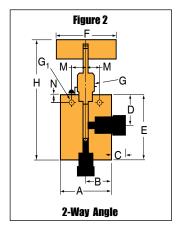
2-Way Straight

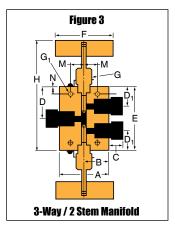
- '	u, o	u.g																
40	VM9071	VEE	9/16	0.109	2.62	1.31	0.72	1.75	1.31	2.50	3.00	1.00	0.28	5.06	0.69	0.38	1.50	
40	VM9081	REG	(14.3)	(2.77)	(66.55)	(33.27)	(18.29)	(44.45)	(33.27)	(63.50)	(76.20)	(25.40)	(7.11)	(128.52)	(17.53)	(9.65)	(38.10)	
																		See
																		Figure 1

2-Way Angle

40VM9072	VEE	9/16	0.109	2.62	1.31	0.72	1.31	2.81	3.00	1.00	0.28	5.37	0.69	0.38	1.50	
40VM9082	REG	(14.3)	(2.77)	(66.55)	(33.27)	(18.29)	(33.27)	(71.37)	(76.20)	(25.40)	(7.11)	(136.40)	(17.53)	(9.65)	(38.10)	_
																See
																Figure 2

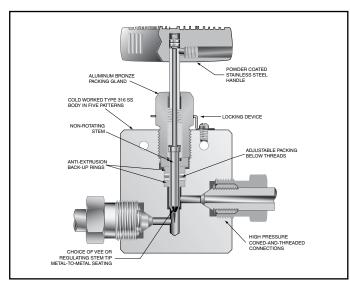

3-Way / 2 Stem Manifold


40VM9075	VEE	9/16	0.109	2.62	1.31	0.72	2.06	1.31	4.12	3.00	1.00	0.28	6.59	0.69	0.38	1.50	
40VM9085	REG	(14.3)	(2.77)	(66.55)	(33.27)	(18.29)	(52.32)	(33.27)	(104.65)	(76.20)	(25.40)	(7.11)	(167.39)	(17.53)	(9.65)	(38.10)	
																	See
																	Figure 3


G - Packing gland mounting hole drill size

G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. All dimensions for reference only and subject to change.

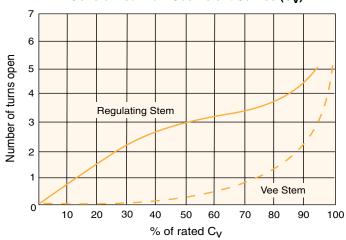
* H Dimension is with stem in the closed position


Needle Valves - 60VM Series

Pressures to 60.000 psi (4137 bar)

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
1/4	F250C	0.062 (1.57)	0.08	60,000 (4137)
3/8	F375C	0.062 (1.57)	0.09	60,000 (4137)
9/16	F562C	0.078 (1.98)	0.14	60,000 (4137)

Notes:


- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.

To ensure proper fit use Autoclave tubing

AUTOCLAVE ENGINEERS 3165S 60VM4071 PSI @ RT HT-A10179 100-180 V.C.1-3

Generalized Flow Coefficient Curves (C_V)

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 60VM Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 60VM4071 **60VM** 07 XX Outside Diameter Stem/Seat Valve Body **Options** Series Pattern **Tube Size** Type For extreme 07 - non-rotating 4-1/4" 1 - two-way straight temperature and other 6-3/8" Vee stem (on-off service) 2 - two-way angle options, see Valve 9-9/16" 08 - non-rotating 3 - three-way, two on pressure Options. regulating stem (tapered tip 4 - three-way, one on pressure for regulating and shutoff) 5 - three-way, two-stem 87 - Vee stem with replaceable manifold valve seat 88 - Regulating stem with replaceable seat

Extreme Temperatures

Standard Autoclave valves with Teflon packing may be operated from 0°F (-17.8°C) to 450°F (232°C). High temperature packing is available for service from -423°F (-252°C) to 1200°F (649°C) by adding the following suffixes to catalog order number.

TG - standard valve with Teflon glass packing to 600°F (316°C).

GY - standard valve with graphite braided yarn packing to 800°F (427°C).

HT - extended stuffing box valve with graphite braided yarn packing to 1200°F (649°C).

(66.55)

(33.27)

(18.29)

(45.45)

(33.27)

B - standard valve with cryogenic trim material and Teflon packing to -100°F (-73°C).

 LT - extended stuffing box valve with Teflon packing & Cryogenic trim materials to -423°F (-252°C).

K - anti-vibration collet and gland assembly.

Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R60VM4071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)

digit part number found in the valve drawing or contact your Sales Representative for information.

Consult your Autoclave representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Stem	Outside	Orifice					Dim	ensions	- inches	(mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	М	N	ness	Pattern
2-Way S	-Way Straight																
60VM4071	VEE	1/4	0.062	2.00	1.00	0.50	1.69	1.31	2.12	3.00	1.00	0.22	4.75	0.69	0.38	1.00	
60VM4081	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(42.93)	(33.27)	(53.85)	(76.20)	(25.40)	(5.59)	(120.65)	(17.53)	(9.65)	(25.40)	
60VM6071	VEE	3/8	0.062	2.00	1.00	0.53	1.69	1.31	2.25	3.00	1.00	0.22	4.87	0.69	0.38	1.00	_ See
60VM6081	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(42.93)	(33.27)	(57.15)	(76.20)	(25.40)	(5.59)	(123.70)	(17.53)	(9.65)	(25.40)	Figure 1
60VM9071	VEE	9/16	0.078	2.62	1.31	0.72	1.75	1.31	2.50	3.00	1.00	0.28	5.13	0.69	0.38	1.50	

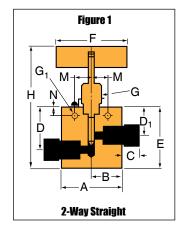
2-Way Angle

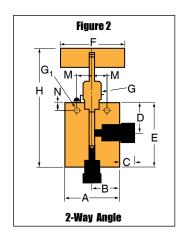
2 muj 1	111910															
60VM4072	VEE	1/4	0.062	2.00	1.00	0.50	1.31	2.38	3.00	1.00	0.22	5.00	0.69	0.38	1.00	
60VM4082	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(60.45)	(76.20)	(25.40)	(5.59)	(127.00)	(17.53)	(9.65)	(25.40)	
60VM6072	VEE	3/8	0.062	2.00	1.00	0.53	1.31	2.62	3.00	1.00	0.22	5.25	0.69	0.38	1.00	See
60VM6082	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(66.55)	(76.20)	(25.40)	(5.59)	(133.35)	(17.53)	(9.65)	(25.40)	Figure 2
60VM9072	VEE	9/16	0.078	2.62	1.31	0.72	1.31	2.81	3.00	1.00	0.28	5.44	0.69	0.38	1.50	
60VM9082	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(33.27)	(71.37)	(76.20)	(25.40)	(7.11)	(138.18)	(17.53)	(9.65)	(38.10)	

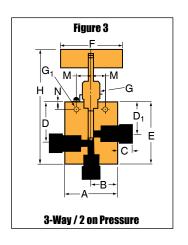
(63.50)

(76.20)

(25.40)


3-Way / 2 on Pressure


60VM9081 REG (14.29) (1.98)


60VM4073	VEE	1/4	0.062	2.00	1.00	0.50	1.69	1.31	2.38	3.00	1.00	0.22	4.75	0.69	0.38	1.00	
60VM4083	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(42.93)	(33.27)	(60.45)	(76.20)	(25.40)	(5.59)	(120.65)	(17.53)	(9.65)	(25.40)	
60VM6073	VEE	3/8	0.062	2.00	1.00	0.53	1.69	1.31	2.75	3.00	1.00	0.22	4.87	0.69	0.38	1.00	See
60VM6083	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(42.93)	(33.27)	(68.86)	(76.20)	(25.40)	(5.59)	(123.70)	(17.53)	(9.65)	(25.40)	Figure 3
60VM9073	VEE	9/16	0.078	2.62	1.31	0.72	1.75	1.31	3.03	3.00	1.00	0.28	5.13	0.69	0.38	1.50	
60VM9083	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(45.45)	(33.27)	(76.96)	(76.20)	(25.40)	(7.11)	(130.30)	(17.53)	(9.65)	(38.10)	

G - Packing gland mounting hole drill size

G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves. All dimensions for reference only and subject to change.

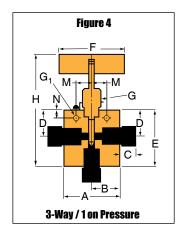
^{*} H Dimension is with stem in the closed position.

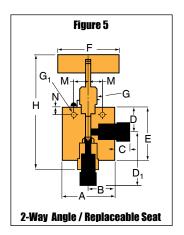
Catalog	Stem	Outside	Orifice					Dime	nsions -	inches (mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	С	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

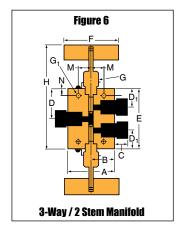
3-Way / 1 on Pressure

60VM4074	VEE	1/4	0.062	2.00	1.00	0.50	1.31	2.38	3.00	1.00	0.22	5.00	0.69	0.38	1.00	
60VM4084	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(60.45)	(76.20)	(25.40)	(5.59)	(127.00)	(17.53)	(9.65)	(25.40)	
60VM6074	VEE	3/8	0.062	2.00	1.00	0.53	1.31	2.62	3.00	1.00	0.22	5.25	0.69	0.38	1.00	See
60VM6084	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(66.55)	(76.20)	(25.40)	(5.59)	(133.35)	(17.53)	(9.65)	(25.40)	Figure 4
60VM9074	VEE	9/16	0.078	2.62	1.31	0.72	1.31	2.81	3.00	1.00	0.28	5.44	0.69	0.38	1.50	
60VM9084	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(33.27)	(71.37)	(76.20)	(25.40)	(7.11)	(138.18)	(17.53)	(9.65)	(38.10)	

2-Way Angle / Replaceable Seat


	_																
60VM4872	VEE	1/4	0.062	2.00	1.00	0.50	1.31	2.12	2.62	3.00	1.00	0.22	6.28	0.69	0.38	1.00	
60VM4882	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(33.27)	(53.85)	(66.55)	(76.20)	(25.40)	(5.59)	(159.51)	(17.53)	(9.65)	(25.40)	
60VM6872	VEE	3/8	0.062	2.00	1.00	0.53	1.31	2.36	2.62	3.00	1.00	0.22	6.52	0.69	0.38	1.00	See
60VM6882	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(33.27)	(59.94)	(66.55)	(76.20)	(25.40)	(5.59)	(165.60)	(17.53)	(9.65)	(25.40)	Figure 5
60VM9872	VEE	9/16	0.078	2.62	1.31	0.72	1.31	2.68	2.62	3.00	1.00	0.28	6.90	0.69	0.38	1.50	
60VM9882	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(33.27)	(68.07)	(66.55)	(76.20)	(25.40)	(7.11)	(175.26)	(17.53)	(9.65)	(38.10)	

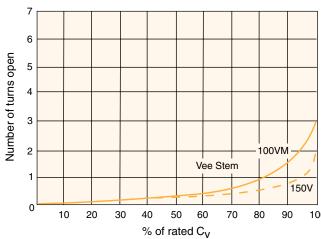

3-Way / 2-Stem Manifold

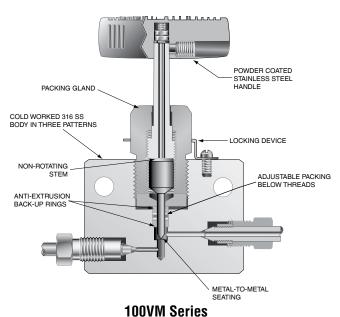

60VM4075	VEE	1/4	0.062	2.00	1.00	0.50	1.72	1.31	3.44	3.00	1.00	0.22	6.07	0.69	0.38	1.00	
60VM4085	REG	(6.35)	(1.57)	(50.80)	(25.40)	(12.70)	(43.69)	(33.27)	(87.38)	(76.20)	(25.40)	(5.59)	(154.18)	(17.53)	(9.65)	(25.40)	
60VM6075	VEE	3/8	0.062	2.00	1.00	0.53	1.88	1.31	3.75	3.00	1.00	0.22	6.37	0.69	0.38	1.00	See
60VM6085	REG	(9.53)	(1.57)	(50.80)	(25.40)	(13.46)	(47.75)	(33.27)	(95.25)	(76.20)	(25.40)	(5.59)	(161.80)	(17.53)	(9.65)	(25.40)	Figure 6
60VM9075	VEE	9/16	0.078	2.62	1.31	0.72	2.06	1.31	4.12	3.00	1.00	0.28	6.37	0.69	0.38	1.50	
60VM9085	REG	(14.29)	(1.98)	(66.55)	(33.27)	(18.29)	(52.32)	(33.27)	(104.65)	(76.20)	(25.40)	(7.11)	(161.80)	(17.53)	(9.65)	(38.10)	

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

All dimensions for reference only and subject to change.
* H Dimension is with stem in the closed position.

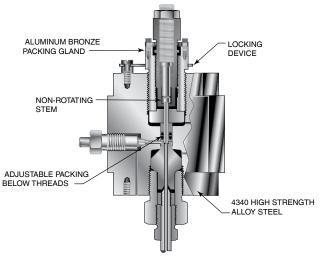
Needle Valves - 100VM & 150V Series


Pressures to 150,000 psi (10350 bar)

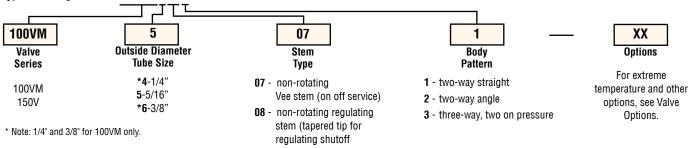

Tube Outside Diameter Size Inches	Connection Type	Orifice Size Inches (mm)	Rated C _v *	Pressure Rating psi (bar) @ Room Temperature**
Series 100VM 1/4, 5/16, 3/8	F312C150	0.062 (1.57)	.09	100,000 (6895)
Series 150V 5/16	F312C150	0.062 (1.57)	.06	150,000 (10342)

Notes:

- * C_V values shown are for 2-way straight valve pattern. For 2-way angle patterns, increase C_V value 50%.
- ** For complete temperature ratings see pressure/temperature rating guide in Technical Information section.


Generalized Flow Coefficient Curves (C_V)

Notes: Torque wrench required to operate valves.


150V Series

To ensure proper fit use Autoclave tubing

Ordering Procedure

For complete information on available stem types, optional connections and additional valve options, see Needle Valve Options section or contact your Sales Representative. The 100V Series valves are furnished complete with connection components, unless otherwise specified.

Typical catalog number: 100VM5071

Valve Options

Extreme Temperatures

Standard AE valves with Teflon packing may be operated to 450°F (232°C), and to 230°F (110°C) with nylon-leather packing. **K** - anti-vibration collet and gland assembly.

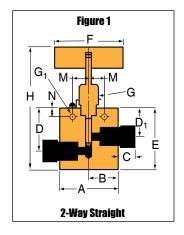
For other packing options consult the factory.

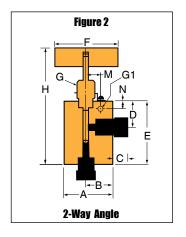
Valve Maintenance

Repair Kits: add "R" to the front of valve catalog

number for proper repair kit. (Example: **R100VM15071**)

Valve Bodies: Valve bodies are available. Order using the eight (8)


digit part number found in the valve drawing or contact your Sales Representative for information.


Consult your Autoclave representative for pricing on repair kits and valve bodies. Refer to the Tools, Installation, Operation and Maintenance section for proper maintenance procedures.

Catalog	Stem	Outside	Orifice					Dim	ensions	- inches	(mm)					Block Thick-	Valve
Number	Туре	Diameter Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern
2-Way	Stra	ight															
100VM4071		1/4" (6.35)	0.062	3.00	1.50	0.52	1.75	1.44	2.25	4.00	1.12	0.34	5.32	1.12	0.50	1.38	See
100VM5071 100VM6071		5/16" (7.93) 3/8" (9.53)	(1.57)	(76.20)	(38.10)	(13.21)	(44.45)	(36.58)	(57.15)	(101.60)	(28.45)	(8.64)	(135.13)	(28.45)	(12.70)	(35.05)	Figure 1
2-Way	Angl	le															
100VM4072		1/4" (6.35)	0.062	2.25	1.50	0.52	1.44		3.00	4.00	1.12	0.34	6.05	0.94	0.50	1.38	See
100VM5072 100VM6072		5/16" (7.93) 3/8" (9.53)	(1.57)	(57.15)	(38.10)	(13.21)	(36.58)		(76.20)	(101.60)	(28.45)	(8.64)	(153.67)	(23.88)	(12.70)	(35.05)	Figure 2

G - Packing gland mounting hole drill size G_1 - Bracket mounting hole size

G₁ - Bracket mounting noie size Panel mounting drill size: 0.22" all valves. All dimensions for reference only and subject to change.

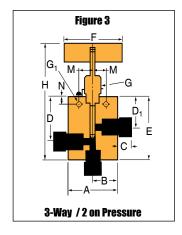
^{*} H Dimension is with stem in the closed position.

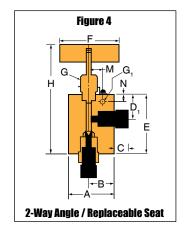
Catalog Sto	Outside	Orifice					Dime	ensions -	inches ((mm)					Block Thick-	Valve
	ype Tube	Diameter	A	В	C	D	D ₁	E	F	G	G ₁	Н*	M	N	ness	Pattern

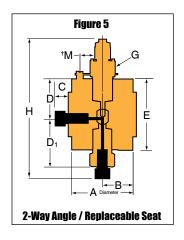
3-Way / 2 On Pressure

o	 															
100VM4073	1/4" (6.35) 5/16" (7.93)	0.062	3.00	1.50	0.52	1.75	1.44	3.25	4.00	1.12	0.34	6.31	1.12	0.50	1.38	
100VM5073	3/8" (9.53)	(1.57)	(76.20)	(38.10)	(13.21)	(44.45)	(36.58)	(82.55)	(101.60)	(28.45)	(8.64)	(160.27)	(28.45)	(12.70)	(35.05)	0
																See
																Figure 3

2-Way Angle/Replaceable Seat


	 o, nopiu	-	Jour													
100VM4872	1/4" (6.35) 5/16" (7.93)	0.062	2.25	1.50	0.52	1.44	3.05	3.00	4.00	1.12	0.34	7.57	0.94	0.50	1.38	
100VM5872	3/8" (9.53)	(1.57)	(57.15)	(38.10)	(13.21)	(36.58)	(77.47)	(76.20)	(101.60)	(28.45)	(8.64)	(192.30)	(23.88)	(12.70)	(35.05)	
																See Figure 4


2-Way Angle / Replaceable Seat


	_												
150V5072	VEE	5/16	0.062	3.75	1.88	2.25	2.63	4.00	1.650	7.12	1.25 [†]		
		(7.93)	(1.57)	(95.25)	(47.63)	(57.15)	(66.80)	(101.60)	(41.91)	(180.85)	(31.75)		
													See
													Figure 5

G - Packing gland mounting hole drill size G₁ - Bracket mounting hole size Panel mounting drill size: 0.22" all valves.

All dimensions for reference only and subject to change.
* H Dimension is with stem in the closed position.

† (2) 1/4"-20 mounting holes 180° apart and (1) locking device screw 90° apart

All general terms and conditions of sale, including limitations of our liability, apply to all products and services sold.

! WARNING !

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE

PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND/OR PROPERTY DAMAGE.

This document and other information from Snap-tite, Inc., its subsidiaries and authorized distributors, provides product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operation conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Snap-tite, Inc. and its subsidiaries at any time without notice.

Industrial Estate
Whitemill-Wexford
Republic of Ireland
PH: 353 53 914 1566 FAX: 353 53 914 1582
e-mail: ste_sales@snap-tite.com
www.snap-tite.com

Fluid Components
Division of Snap-tite, Inc.

8325 Hessinger Drive Erie, Pennsylvania 16509-4679 USA PH: 814-860-5700 FAX: 814-860-5811 e-mail: ae_sales@snap-tite.com www.autoclave.com

ISO-9001 Certified